Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

Computational and Robotic Models of the Hierarchical Organization of Behavior

 eBook
Sofort lieferbar | Lieferzeit:3-5 Tage I
ISBN-13:
9783642398759
Einband:
eBook
Seiten:
358
Autor:
Gianluca Baldassarre
eBook Typ:
PDF
eBook Format:
EPUB
Kopierschutz:
1 - PDF Watermark
Sprache:
Englisch
Beschreibung:

Chap. 1 - Computational and Robotic Models of the Hierarchical Organization of Behavior: An Overview.- Chap. 2 - Behavioral Hierarchy: Exploration and Representation.- Chap. 3 - Self-organized Functional Hierarchy Through Multiple Timescales: Neurodynamical Accounts for Behavioral Compositionality.- Chap. 4 - Autonomous Representation Learning in a Developing Agent.- Chap. 5 - Hierarchies for Embodied Action Perception.- Chap. 6 - Learning and Coordinating Repertoires of Behaviors with Common Reward: Credit Assignment and Module Activation.- Chap. 7 - Modular, Multimodal Arm Control Models.- Chap. 8 - Generalization and Interference in Human Motor Control.- Chap. 9 - A Developmental Framework for Cumulative Learning Robots.- Chap. 10 - The Hierarchical Accumulation of Knowledge in the Distributed Adaptive Control Architecture.- Chap. 11 - The Hierarchical Organization of Cortical and Basal Ganglia Systems: A Computationally Informed Review and Integrated Hypothesis.- Chap. 12 - Divide and Conquer: Hierarchical Reinforcement Learning and Task Decomposition in Humans.- Chap. 13 - Neural Network Modelling of Hierarchical Motor Function in the Brain.- Chap. 14 - Restoring Purpose in Behavior.
Current robots and other artificial systems are typically able to accomplish only one single task. Overcoming this limitation requires the development of control architectures and learning algorithms that can support the acquisition and deployment of several different skills, which in turn seems to require a modular and hierarchical organization. In this way, different modules can acquire different skills without catastrophic interference, and higher-level components of the system can solve complex tasks by exploiting the skills encapsulated in the lower-level modules. While machine learning and robotics recognize the fundamental importance of the hierarchical organization of behavior for building robots that scale up to solve complex tasks, research in psychology and neuroscience shows increasing evidence that modularity and hierarchy are pivotal organization principles of behavior and of the brain. They might even lead to the cumulative acquisition of an ever-increasing number of skills, which seems to be a characteristic of mammals, and humans in particular.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.